skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grant, Robert F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Abstract The dynamics of methane (CH4) cycling in high-latitude peatlands through different pathways of methanogenesis and methanotrophy are still poorly understood due to the spatiotemporal complexity of microbial activities and biogeochemical processes. Additionally, long-termin situmeasurements within soil columns are limited and associated with large uncertainties in microbial substrates (e.g. dissolved organic carbon, acetate, hydrogen). To better understand CH4cycling dynamics, we first applied an advanced biogeochemical model,ecosys, to explicitly simulate methanogenesis, methanotrophy, and CH4transport in a high-latitude fen (within the Stordalen Mire, northern Sweden). Next, to explore the vertical heterogeneity in CH4cycling, we applied the PCMCI/PCMCI+ causal detection framework with a bootstrap aggregation method to the modeling results, characterizing causal relationships among regulating factors (e.g. temperature, microbial biomass, soil substrate concentrations) through acetoclastic methanogenesis, hydrogenotrophic methanogenesis, and methanotrophy, across three depth intervals (0–10 cm, 10–20 cm, 20–30 cm). Our results indicate that temperature, microbial biomass, and methanogenesis and methanotrophy substrates exhibit significant vertical variations within the soil column. Soil temperature demonstrates strong causal relationships with both biomass and substrate concentrations at the shallower depth (0–10 cm), while these causal relationships decrease significantly at the deeper depth within the two methanogenesis pathways. In contrast, soil substrate concentrations show significantly greater causal relationships with depth, suggesting the substantial influence of substrates on CH4cycling. CH4production is found to peak in August, while CH4oxidation peaks predominantly in October, showing a lag response between production and oxidation. Overall, this research provides important insights into the causal mechanisms modulating CH4cycling across different depths, which will improve carbon cycling predictions, and guide the future field measurement strategies. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. Abstract Quantifying the temperature sensitivity of methane (CH4) production is crucial for predicting how wetland ecosystems will respond to climate warming. Typically, the temperature sensitivity (often quantified as a Q10value) is derived from laboratory incubation studies and then used in biogeochemical models. However, studies report wide variation in incubation-inferred Q10values, with a large portion of this variation remaining unexplained. Here we applied observations in a thawing permafrost peatland (Stordalen Mire) and a well-tested process-rich model (ecosys) to interpret incubation observations and investigate controls on inferred CH4production temperature sensitivity. We developed a field-storage-incubation modeling approach to mimic the full incubation sequence, including field sampling at a particular time in the growing season, refrigerated storage, and laboratory incubation, followed by model evaluation. We found that CH4production rates during incubation are regulated by substrate availability and active microbial biomass of key microbial functional groups, which are affected by soil storage duration and temperature. Seasonal variation in substrate availability and active microbial biomass of key microbial functional groups led to strong time-of-sampling impacts on CH4production. CH4production is higher with less perturbation post-sampling, i.e. shorter storage duration and lower storage temperature. We found a wide range of inferred Q10values (1.2–3.5), which we attribute to incubation temperatures, incubation duration, storage duration, and sampling time. We also show that Q10values of CH4production are controlled by interacting biological, biochemical, and physical processes, which cause the inferred Q10values to differ substantially from those of the component processes. Terrestrial ecosystem models that use a constant Q10value to represent temperature responses may therefore predict biased soil carbon cycling under future climate scenarios. 
    more » « less
  4. Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability. 
    more » « less